The Light Signatures Protocol

Eric Pommateau**

*NTSys
64, chemin des mouilles
69130 Ecully
FRANCE

Abstract: We present a new client-server secu-
rity protocol that includes a high-performance sig-
natures mechanism. The protocol design relies on
the two following ideas: 1) in a client-server rela-
tion, the permanence of the parties allows to share
session keys for signing successive messages; 2) the
session keys can be set using standard strong cryp-
tography between the two parties. Afterwards, they
are used for signing the messages within a prede-
fined cycle of exchanges.

This concept has been applied to the u-COMM
micro-payment system developed by NTSys and
leads to a performance gain of the order of one hun-
dred.

Keywords: micro-payment, cryptographic proto-
col, authentication, signatures, performances.

1 Introduction

The design of light signatures has been mo-
tivated by the development of the y-Comm
micro-payment system (Fig. 1). Payment
techniques on Internet are mostly based on
SSL/TLS [10], with high-performance alter-
natives brought by hardware devices. Never-
theless, the messages authentication scheme is
a crucial stake for micro-payment and must
be cost efficient. Qur work followed previous
works on micro-payment [3, 4, 5, 6], with the
objective of designing a software highly pow-
erful and cost effective solution. The protocol
of light signatures presented here, is built on a

Frédéric Bellaiche*

TEcole Normale Supérieur de Lyon
46, Alle dTtalie
69364 Lyon Cedex 07
FRANCE

Jacky Montiel®?

'CEDRIC - CNAM
292 Rue St Martin
75141 Paris Cedex 03
FRANCE

cycle of client/server exchanges which requires
a reciprocal authentication. It is faster than
the use of a standard strong signature for each
message and provides the same level of security.
This mechanism is particularly interesting with
regard to micro-payment.

#-COMM uses an aggregation mechanism
managed by a confidence party that arbi-
trates transactions between content resellers
and Internet end-users. The on-line con-
trol/registration of transactions requires au-
thentication mechanisms which, in the case of
micro-payment, must be cost effective. Using
standard RSA or elliptic curves cryptography
becomes critical to manage signatures in such
systems when the end-user traffic increases,
since the confidence party is a bottleneck. The
system is improved by light signatures between
the confidence party and the content servers.

The light signatures protocol has been ini-
tially imagined by Jacky Montiel!. The re-
finements and development have been carried
out in the y-COMM+ extension project, sup-
ported by the French research public program
OPPIDUM on security, in co-operation with
the Ecole Normale Supérieure de Lyon.

2 Principles

The protocol requires an initialization and uses
a sequence of N client/server exchanges of mes-
sages, each sequence is called, in a sequel, a
cycle.

'The use of light signatures in micro-payment systems is patented by NTSys.

Confidence Party

2: Light' Signature

5: Content

Content Reseller

4: Access Key

Client

Figure 1: Example of on-line transaction

When each cycle begins, a seed is sent by
the client with the first message. It is ciphered
with a secure public key cipher (RSA, El Gam-
mal).

In a first step, a sequence of nonce (the
nonce sequence) is generated by the client,
starting with the seed. FEach element of the
sequence is obtained as a one way hash func-
tion of the previous one. The sequence has
N elements. N is a bound of the number of
messages exchanged between the client and the
server. When the server receives the first mes-
sages, it deciphers the seed and generates the
same nonce sequence. In the next steps the odd
elements of nonce sequence are added to the
messages sent from the client to the server and
even elements are added to the messages sent
from the server to the client. Each message is
also signed by another hash function applied to
the whole message including the nonce. As the
client and the server know the whole nonce se-
quence, each one is able to verify the signature
of each received message. This protocol can be
used upon a non reliable lower protocol layer
(such as UDP or at the IP level): the nonce se-
quence is used in a decreasing order to protect
upon loss of messages sequence’ and the se-
quence order can be used as a synchronization
point in the client-server exchange.

%this mechanism is similar to OTP [9]

3 The Protocol

3.1

Notation

All trough this document, we define :

Clt: the client,

Srv: the server,

Q;: a request of the client,

A;: a response from the server,

Indgy and Indgpqy: two integers main-
tained by the client and the server (re-
spectively),

N: the maximum number of messages to
be sent,

X,Y: the concatenation of message X
and message Y,

P4 and S4: a public-private key pair
owned by the actor A,

{X}k: the message X ciphered with the
key K,

H;(X): X hashed with the hash function
H;

a: a seed created by Clt (e.g. a pseudo-
random value),

E: an error code, defined below,

Sign(X, E,k): the signature of message
X concatenated with E and the indice &
(see formula below).

3.2 Generating the Nonces Sequence

The seed «, is created randomly by the client
and sent to the server with the use of heavy
cryptography. First, the client ciphers the seed
with its private key to ensure the authentica-
tion and then with the server’s public key to
ensure the confidentiality.

This seed is used to create the nonce se-
quences by iterating a hash function on this
seed; a sequence of the form:

Q, Hl(a),Hf(a), ... ,H%N(a)

is obtained. We note N;*, a nonce correspond-
ing to the ith hash of a (e.g. N = Hi(a)).

The client and server must store the whole
sequence (see performances).

3.3 Signature’s Function

The function used to sign a message is:
Sign(M,E,i) = Ho(M,E,Ngy_,_,)

where M is the content of the message (Q; or
A;, depending of the actor who signs the mes-
sage).

Hy hashes the message. Without this, any
intruder can change the content and sign the
message with another valid signature. In prac-
tice, Hy and Hy can be the same.

3.4 Initialization

The protocol requires an initialization phase
which is not defined in the protocol specifica-
tion.

e Client and server must have both a
public-private key pair. The client must
know the server’s public key and the
server must know all the client public
keys. It can rely on a Public Key In-
frastructure (PKI) [11].

¢ N must be the same for client and server.
N influences the speed-up of the protocol
(see performance).

e Client and Server have an unique identi-
fier (Clt, Srv), all the actors must know
these identifiers.

37 represents an empty string

3.5 Protocol Data Units

3.5.1 First Message, Issued by the
Client

The first message is:

ACTOR, INDEX, SEED, CONTENTS,
SIGNATURE

e ACTOR is the entity who sends the mes-
sage, here AcTOR = Clt,

e INDEX, represents the rank of the nonce
being currently used. (here INDEX=0),

e SEED, represents the seed ciphered with
the client’s private key end then with the
server’s public key,

o CONTENTS is the first request of the
client. Here it is equal to @y,

e SIGNATURE is the result of the Sign
(CONTENTS,” , INDEX)? function.

Note that there is no error message. During
the first message, no message is transmitting
between the client and the server.

3.5.2 Other Message, Issued by The
Client or by the Server

Any message of the protocol sent either by the
server or the client is of the form:

Actor, INDEX,CONTENTS, ER-
ROR, COMPLEMENT_ERROR, SIG-
NATURE

where:

e ACTOR is the one who sends the message
(the identifier of the client for example,
and a unique code for the server).

e INDEX represents the rank of the nonce
in use.

¢ ERROR is an acknowledgment or a code
for a protocol violation.

e COMPLEMENT_ERROR is an extra infor-
mation requested by some error.

e SIGNATURE is obtained by the function:
Sign(CONTENTS,ERROR,INDEX)

e CONTENTS is either a client’s request or
a server respounse.

3.6 Error Code

The error codes are:

s OK,

e BAD_SIGNATURE,

e SERVER EARLY,

o SERVER_LATE,

e CLIENT EARLY,

e CLIENT LATE,

e TIME OUT_CLIENT,
e TIME_OUT_SERVER,
e LAST MESSAGE.

The complement is empty if the code does
not need an extra information (“OK” for ex-
ample). All errors are included in the signed
part of the message (light ciphered), otherwise
any intruder could, without modifying a mes-
sage, change the error code and make strong
attacks like DoS* attacks: for example sending
the error code “LAST MESSAGE”. The com-
plement is used to have information about the
desynchronization and to have extra informa-
tion for intrusion detection.

3.7 Description of the Protocol

The error codes and error complements are
omitted in the messages for lisibilities issues.
Each found error is stored localy and sent in
blocks with the next message. When a mes-
sage is sent, the error code is nulled.

3.7.1 Client’s First Request

At the beginning of the protocol, Indgy: is 0.

Clt — Srv:
Cit,0,{{a}sqy } Ps,,, Stgn(M,0), M.

At this moment, the nonce sequence derived
from the seed & must be stored in a protected
area on both the client and server side. If the
sequence is not stored, the performance of the
protocol is worse then a classical protocol.

“Denial of Service

3.7.2 Client’s Next Request

Indgyy, is the last index received by the client
from the server. Indcy # 0 and Indcy < N:

o if Indsm = IndClt:

Clt - Srv:
Clt,2 x Indcy, Sign(QIndClt,
2% Indcit), Qrndgy, -

e else if Indgyy < Indcy (Old message of
the server):

The client ignores this response.
ERROR+ = SERVER_LATE

e else Indgry > Indcy:

ERROR+ =
LAST_MESSAGE+ SERVER_EARLY

Clt — Srv:
Clt,2N, Sign('"ERROR’, 2N),
"ERROR’

If Indgy, = 0, the message is not processed
(SERVER_LATE). If Indgy, > N, the mes-
sage is ignored (invalid signature).

3.7.3 Server’s Response

At the beginning of the protocol, Indg,, equals
zero. When the client’s first message arrives,
all the nonce sequence is stored by the server.

Depending of the value of Indgy received,
the server answers according to:

e if (Indcy = Indgyy):

Srv — Clt : Srv,2 x Indgqy +
1, Sign(AIndSM, 2 x Indgy, +
]-)aAIndsw

The variables are then updated:
Indgry, = Indgry+1, Indoy = Indeop+1
(when the client receives the answer from
the server).

e else if (Indcy > Indgpy):
ERROR+=CLIENT _EARLY

Srv — Clt Srv,2 * Indop +
1, Szgn(R, 2 % IndClt +].), AI”dSrv

The variables are then updated:

Indgry, = Indey + 1, Indey = Indcop +
1(when the client receives the answer of
the server)

e else if (IndClt < Indsm):

This request is ignored.
ERROR+=CLIENT_LATE

No update is necessary.

3.7.4 Other Events

o TIME_ QUT_CLIENT: If the server
does not answer in a defined amount
of time, the client resends its re-
quest, signed with a new nonce. It
sends the TIME OUT_CLIENT too
and the number of time-out as a com-
plement. When a fixed time-out number
is reached, another sequence is generated
by the client.

e TIME_QOUT_SERVER: This situation
happens because of the limited time-life
of the nonce and the key. Furthermore,
the server might want to do revisions of
its protocol. This mechanism is also use-
ful when the server analyzes that an in-
truder has stolen its keys.

The time scales of the two events can not be
compared: the first time scales is within the
order of a minute and the second within the
order of a week or a month.

4 Claims

4.1 Cryptographics Mechanisms

The mechanisms used in this protocol are:

1. The public-private key scheme
This method ensures that no one but the
server can read the seed. Ounly the client
and the server know the sequence.

2. one-way hash function
Hy and Hy are functions which are im-
possible to reverse with a computer (with
the knowledge of H;(z) we do not have
the knowledge of z).

3. Changing nonce
The sequence of nonce is used to protect
against replay of messages attack.

4. Computation of the sequence with a one
way function and keeping the nonce in
reverse side

If the computation function of the se-
quence was trivial, the knowledge of one
nonce could allow any intruder to sign all
the messages until the sequence is empty.
Otherwise, the signature must be light
to compute, so the verification time does
not get too long, thus heavy functions
like 3-DES are not used. One-way func-
tions are a good compromise.

4.2 Attacks Analysis
An intruder is defined by its ability to:

e Read all the messages on the network

e Send messages on the network by taking
the identity of another actor.
¢ Block messages

Nevertheless, he can not within a reasonable
time:

e break a RSA key
e Reverse a one-way function.

4.2.1 Fatal Attacks

The tree actions below are fatal to the proto-
col:

e The intruder acquires ¢, so he can com-
pute the sequence and send as many
signed messages as he wants.

e The intruder acquires Sg,,, S0 he can
play the role of the server for the pro-
tocol.

e The intruder acquires S¢ye, so he can play
the role of the client for the protocol.

We prevent these sorts of attacks by using
a RSA algorithm. If the intruder wants to ac-
quire one of the listed data, he must break RSA
algorithm.

4.2.2 Non-fatal attacks

Two sorts of cryptanalysis attacks are consid-
ered:

1. On-line attacks: An intruder gets and
blocks the progression of a message. He
tries to falsify this message before the
actor emits a TIME_OUT. The one-way
function protects this protocol against
this form of attack. The reasonable
time necessary to reverse this function
is normally greater than the time set to
TIME_OUT_CLIENT

2. Off-line attacks: The intruder, having in-
tercepted a message, has enough time to
compute the next nonce. Getting the
nonce in the reverse way prevents the in-
truder from using his knowledge. He has
to end his calculation before the end of
the protocol (TIME_OUT_SERVER).

4.2.3 Denial of service

The intruder can overflow the server by send-
ing invalid messages or trying to change error
codes. The server protected itself by signing
the error codes and not answering to the first
invalid messages.

4.3 Performance Evaluation
4.3.1 Notation

Let T(RSA) be the mean time to cipher or de-
cipher with a public or a private key using RSA
algorithm.

We note T'(H;), the time to compute the result
of the one-way function H;.

All the functions can be identical (or have the
same characteristics). We will define Hy =

Hy = H in the sequel.

We assume that the time to compute a hash
function on the seed and on a message is the
same.

We compare the time used to process N ex-
changes between the client and the server in
two cases. In the first case all messages use a
classical RSA signature:

Clt — Srv: M,{H>(M)}p,,,
Srv = Clt: R,{H>(M)}p,,

This time is denoted Trs4(N).
In the second case, our protocol is used. The
corresponding time is denotes Tsz,(N). In both
cases, exchanges are assumed to be free of er-
rors.

4.3.2 Results
We get:

e Trsa(N)=2N[T(H) + T(RSA)]

The message is first hashed and then ci-
phered with an RSA key, so the formula
18:

o Tsr(N)=2xT(RSA)+3x N xT(H)
The first message needs two RSA cipher-
ing. N hashes are needed for the com-
putation of the sequence and only two
hashes for each message sent.

We can compute the speed-up ratio Trga/Tsr.-
Trsa/Tsr, = (A+1)/(2A+ 1/N)

where A =T(H)/T(RSA)

4.3.3 Application

MD5 and SHAL are the two hash functions
used in almost all Internet security protocols.
We choosed MD5, for it is faster than SHAL.

A MDb5-hash is 1000 times faster than a 512
bits RSA signature verification [2]. The length
of a can be the same as the result of hash a
message, so we take 160 bits for the length of
«o. With this data, we obtain a speed-up equal
to 45 for N=50 and 83 for N=100. The maxi-
mum speed-up found is 500.50.

5 Conclusion and Further

Work

We have presented a fast and reliable proto-
col of authentication designed to sign messages
in a client-server model. It relies upon strong
cryptography for signatures computation in a
preliminary exchange of seed and it is acceler-
ated by the classical use of one-way function.
The light signatures are thus especially useful
in a scheme of authentication which must be
at the same time fast and inexpensive.

The principal contributions of the light sig-
natures protocol are:

e [t can send messages signed in a fast way

e It does not require any particular hard-
ware (like expensive SSL cards) for equiv-
alent performances.

e [t offers the same level of security as a
heavy signature.

The light signatures protocol has shown its
performance in micro-payment distributed ap-
plications. Other possible fields of application
are:

e smart cards and mobile terminals identi-
fying themselves to a central equipment
(PC or craddle).

e authentication in multi-part systems ar-
chitecture.

An implementation of the protocol devel-
oped by Eric Pommateau is available under
Open Source License. The protocol is used in
the framework of the Internet Payment System
(u-COMM).

Complementary work is currently carried
out at ENSL, as part of u-COMM+ project, on
the formalization of the protocol, in particular
by using formal techniques of Paulson [8] or
Bolignano [7], in order to demonstrate formal
security properties. We thanks Prof. Pierre
Lescanne, D. Hirschcoff and P. Dargenton from
ENSL for their contribution to improve the

protocol. We thanks also Prof. Stéphane
Natkin and Prof. Gérard Florin (CNAM) for
their advices. Eric Pommateau is a PhD stu-
dent in Laboratoire CEDRIC - Conservatoire
National des Arts et Métiers (CNAM).

References

[1] Bruce Schneier, Cryptographie appliquée,
seconde édition, éditions Wiley, 1996.

[2] Mostafa Sherif La monnaie électronigue,
Editions Eyrolles, 1999.

[3] Ronald L. Rivest, Adi Shamir, Payword
and Micromint: Two simple micropayment
scheme, 1996.

[4] Ronald L. Rivest, Electonic lottery Tickets
as Micropayment,Proceedings of Financial
Cryptography '97, 1997.

[6] Steve Glassman, Mark Manasse, Martin
Abadi, The Milicent Protocol for Inexpen-
sive Electronic Commerce

[6] Mihir Bellar, iKP, A Family of Secure Elec-
tronic Payment Protocols, 1995.

[7] Dominique Bolignano, An approach to
the formal wverification of cryptographic-
protocols, Third ACM Conference of Com-
puter and communication Security, pages
106-118, ACM press, 1996.

[8] L C Paulson, The inductive approach to
verifying cryptographic protocols. J. Com-
puter Security 6,pages 85-128, 1998

[9] N. Haller, C. Metz, P.Nesser, M. Straw A4
One-Time Password System (RFC 2289),
February 1998

[10] T. Dierks, C. Allen The TLS Protocol Ver-
sion 1.0 (RFC 2246), January 1999

[11] S. Chokhani, W. Ford Internet X , March
1999

